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Non-linearity, relaxation and diffusion in 
acoustics and ultrasonics 

By D. F. PARKER 
Department of Theoretical Mechanics, The University, Nottingham 

(Received 24 March 1969) 

As they propagate through a gas, fluctuating pressure signals of moderate ampli- 
tude and of ultrasonic frequency are affected by amplitude dispersion, by relaxa- 
tion damping and, particularly in ‘shock layers’, by diffusive damping. We 
derive a ‘high frequency’ theory including all these effects, for disturbances of 
arbitrary wave form excited by a wide variety of boundary conditions. By intro- 
ducing a phase variable a, and taking account of non-linearity, we show how the 
signal propagates along the rays of linear acoustics theory, with constantly 
changing wave profile. 

Relaxation dampens the signal, as for linear acoustics, and also diminishes am- 
plitude dispersion. A criterion for shock formation is given, and the importance of 
non-linearity for signal attenuation exhibited. As shocks form, a surfaces coalesce 
and diffusive mechanisms are accentuated. Whitham’s area rule is shown to be 
relevant for unsteady three-dimensional flows in relaxing gases, and is used to 
compute the attentuation of an ultrasonic beam. Supersonic relaxing flow over a 
wavy wall is also analyzed, and focusing effects are discussed. 

1. Introduction 
In  a relaxing gas acoustic disturbances are affected by three classes of mech- 

anism: (i) those, like vibrational or chemical non-equilibrium, which are ‘slow’ 
rate processes having ‘relaxation times’ much greater than one signal ‘period’; 
(ii) those associated with ‘fast’ processes, like adjustment to equilibrium dis- 
tributions of translational and rotational energy modes, for which the relaxation 
times are much shorter than one signal period; (iii) non-linearity, causing pro- 
file distortion, and tending to steepen compressive portions of the signal, until 
balanced within ‘shock layers’ by accentuated class (ii) mechanisms. Here, we 
extend previous investigations (Parker 1968) of class (i) and (iii) effects in one- 
dimensional signals, to describe the three-dimensional propagation of moderate 
amplitude oscillatory signals in moving, relaxing gases. 

We consider ultrasonic signals having frequencies high compared to the 
‘relaxation frequency’ of some vibrational process of the gas, yet sufficiently 
low for diffusive effects to be important only in shock layers. Moreover, the 
translational and rotational energy modes are everywhere taken as sufficiently 
close to equilibrium for standardviscosity, heat conduction and diffusion processes 
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to describe momentum, energy and composition transport. In  such signals the 
pressure, density and velocity fluctuate rapidly but, outside shock layers, are 
approximately related as in a simple wave, whilst the vibrational excitation, 
and also the specific entropy, change significantly only over larger intervals. 
A ‘two time scale ’ analysis is naturally suggested. 
In 5 3 an auxiliary variable a is introduced, generalizing both the phase vari- 

able of linear acoustics and the variable taken to label wavelets of a simple wave. 
All dependent variables are then defined at  all (a, x, t ) ,  even though they have 
physical meaning only for values of t related implicitly to a at each x. The 
normal n(a, x, t )  and propagation speed c(a, x, t )  of the physically meaningful 
surfaces of constant a must then be determined as part of the high frequency 
procedure. We treat the rapid fluctuations in pressure, density and velocity 
as small, but do not neglect the associated fluctuations in characteristic 
speed, so that the small fluctuations in c and n allow shock formation 
and decay, but on length scales much greater than a ‘wavelength’. Through 
a high frequency analysis the propagation rays are determined, as functions 
of (x, t ) ,  and are those of linear acoustics, and along each a limited a interval 
of the wave form is, to this approximation, appropriately represented. The 
associated ‘propagation equation’, including small diffusive terms and governing 
the signal strength along each ray at  each constant a, generalizes Lighthill’s 
(1956) treatment of one-dimensional gas disturbances satisfying Burgers’ 
equation. 

The modulation, distortion and attenuation of the signal is analyzed in 95. 
Outside shocks, the ‘ray’ equation for signal strength at each wavelet is that of 
Bretherton & Garrett (1968) for conservative systems, modified by a relaxation 
damping term. The effects of background inhomogeneities in the gas, and of 
refraction and geometric focusing, are thus simply related to those for linearized 
wave trains in a non-relaxing gas. In  this description the amplitude dispersion 
(or profile distortion) is governed by a second ‘ray’ equation, whose solutions 
determine the physically meaningful (a, x, t ) .  This equation exhibits the com- 
peting effects of relaxation, refraction and focusing on the distortion rate, and 
gives a criterion (similar to Varley & Rogers (1967) for viscoelastic materials) 
for eventual shock formation. Moreover, once shocks do form their positions 
within the wave profile may be found directly from Whitham’s (1952) area rule. 
To this approximation, none of the modulation effects can alter the succession 
of profile shapes associated with any ray. They can effect only the propagation 
time until certain a wavelets are absorbed in the shock, and the amplitude 
and wavelength at that point. In ‘strong’ (or extremely rapid) signals distortion 
is rapid and profiles soon resemble non-relaxing ‘N waves’, whilst for weaker 
waves relaxation damping retards the wave form distortion, and may completely 
prevent shock formation. These main results are expressed in equations (44), 
(45), (47) and (52). 

In 9 6 we examine the attenuation of a uni-directional beam passing through a 
uniform region, showing the importance of class (ii) mechanisms once shocks 
have formed, as is suggested by the photographs of Krasil’nikov (1963, p. 243). 
Similarly, in 3 7, where flow over a wavy wall is compared with Vincenti ( 1  9591, 
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non-linearity has an important effect in accentuating the diffusion processes. 
In $8 ,  we record how focusing affects modulation in uniform regions, relating 
energy flux simply to the ‘ray tube’ law of linear acoustics. 

2. Basic equations 
In general, processes which are ‘slow’ compared to a characteristic ‘frequency’ 

of the signal are described by treating the gas as a mixture of slowly reacting 
species. For clarity we shall assume that translational and rotational energy 
distributions remain everywhere close to equilibrium, and that only one com- 
position variable q, in addition to density P ,  fluid velocity 3, and specific internal 
energy 2 )  is needed to define the state of the gas. A thermodynamic pressure 
ji and specific enthalpy 

may then be defined, and the equations of continuity, momentum and energy 

ii = e + p / p  

written as 

where p6ii - Tii is the pressure tensor, qi is the energy flux vector, the superposed 
dashes denote physical variables, and the standard summation convention is used 
throughout. The rate of composition change at  a fluid particle is governed by 

where 2, is the diffusion velocity. The vibrational relaxation is towards ‘equili- 
brium states’ 

and has, for all values of ( p ,  p ,  q)  in the range of interest, a time scale comparable 
with the ‘relaxation time’ 7,  chosen to make ih ( = ai/aq) typically of order unity.? 
For convenience we introduce the specific entropy Z = v(p, p ,  q )  and temperature 
T, defined in the standard way so that 

i(13,p7q) = 0, 

Fa3 = dh-dp lp  

in ‘frozen’ processes throughout which q remains constant, and introduce non- 
dimensional variables based on the time scale r, a representative acoustic speed 
a,, density po and temperature To, such that 

i = rt, zi = aorxi, C, = pop, ui = a,ui, 

p = poaip,  = aXh, = TOT, s = T i l a ; s ,  - 

and q F >  P ,  4 )  = Z(P’ P, 4) .  ( 5 )  

t We shall use suffices to denote partial differentiation with respect to state variables and 
a ‘phase variable’ a, and dashes to denote ordinary differentiation. 
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We choose p, q and s as independent state variables, defining 

P = P ( h  P ,  4)  = m p ,  q, 4, h = W p ,  P ,  4, 
W P ,  Q ,  4 , p ,  a)  = L(p, q, s), T = T(P, q,s),  s = T(P,  P, !I), 

so that the system (1)-(4) may be replaced by 

in which Z is defined by 

To complete the system (6)-(9) constitutive laws giving rij,q,,dj in terms of 
p, q, s, u, and their derivatives must be added. However, the functional form of 
the relationships has very little effect on the ultrasonic propagation, and it is 
only for definiteness that we use the expressions 

(Hirshfelder, Curtiss & Bird 1964, chapter 11) for a single vibrational relaxation 
process in which thermal diffusion and its inverse, the Dufour effect, are absent. 
Here p-l is the Reynolds number based on a,, T and po, pB is the ratio of bulk 
and shear viscosities, whilst K-l, D-l are Prandtl and Schmidt numbers res- 
pectively. There is no restriction on the departure from vibrational equilibrium, 
and, so long as spatial gradients of p, q, s and u are limited, all diffusion effects 
are small with p. Thus, our theory describes propagation through a 'background ' 
flow in which relaxation and diffusion rates are small, except possibly in certain 
boundary layers. 
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3. The asymptotic procedure 

tions for a vector w(x, t) of dependent variables having the form 
The analysis is best motivated by analogy with linear acoustics. There, solu- 

w = Re(W(x,t)expi(wt-k.x)}, k,wreal, (15) 

are sought by a procedure which requires that the scales of x and t should be 
comparable with those over which the amplitudes W, frequency w and wave- 
number k vary significantly. Thus w and lkl are large, so that the ‘phase’ 
(wt - k . x) E a varies rapidly with x and t. These essential assumptions 

we retain in our non-linear theory, although we discard the irrelevant restric- 
tion to wave forms essentially sinusoidal in space and time. 

We follow previous investigations of rapidly oscillating signals (Parker 1968) 
by writing dependent variables as functions of a ‘phase variable’ a(x, t )  in addi- 
tion to x and t. We choose a to record the rapidly fluctuating details of the ultra- 
sonic signal, and to label monotonically those propagating surfaces over which 
velocity and density are virtually constant, varying only on the scales of x and t .  
Although in previous investigations of such ‘relatively undistorted waves ’ 
(Varley & Cumberbatch, to be published) the independent variables (x, t) have 
been replaced by x and a ‘rapid’ variable a, with t subsequently related to x 
and a, this procedure has pitfalls. Unless judiciously applied, the approximation 
process leads to a non-uniformly valid representation, meaningful only near the 
wavefront of a rapid acoustic disturbance (see Parker & Varley 1968). To avoid 
this, we retainzl as an auxiliary variable, formally independent of x and t ,  and we 
use the consequent freedom to ensure greater validity for the representation. 

We modify the derivatives in (6)-(9), (12)-(14) by the transformations 

a a  a a a  a 
ax, ax, aa’ at at a i  
--+--OK$- -+-+WV- 

Treating w-l as a small parameter, we then construct solutions of the modified 
equations defined for all (a, x, t). The resulting ‘extended’ solutions contain 
physically meaningful solutions to (6)-(9), (12)-(14) when u is regarded as a 
function of x and t, no longer freely chosen, but implicitlyrelated to (x, t )  through 
a solution of 

(16) 
aa aa 
ax, at 
- = - WK,(a, X, t), - = W V ( a ,  x, t). 

These equations define the ‘phase surfaces’ corresponding to the solution, and 
will always exist provided that the compatibility conditions 

are satisfied at  all values of (a ,  x, t ) .  
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Before constructing solutions p, u, q, s, K ,  v to (17)  and the extended forms 
of (6)-(9)) (12)-(14), it is useful to discuss the basic solutions which arise in the 
formal limit w-1+ 0, ,u+ 0, in which both relaxation and diffusion effects vanish. 
In  this case, equations (6)-(9) become homogeneous of first order in a derivatives, 
and give solutions p = p(a), u = u(a), etc., depending on a alone, which are 
simple waves (Courant & Friedrichs 1948, Varley 1965). From the general 
theory of such disturbances it is known that a is implicitly related to (x, t )  in 
the form 

showing that planes with unit normal n(a) and advancing at speed ~ ( a )  carry 
constant values of each dependent variable. ?!here is considerable choice in the 
functions n(a), c(a), but corresponding to each choice there are some combina- 
tions, known as Riemann invariants, of the dependent variables which are identi- 
cally uniform throughout the simple wave. It is easily seen that for equations 
(6)-(9) the composition q and entropy s = q(p,p,q) are two such Riemann in- 
variants, whilst p, u are related by 

The compatibility condition, or characteristic equation, 

( V - U j K j ) 2  = n p K j K j  (20) 

for (19) shows that for arbitrary n(a) the wave velocity c(a)n(a) = ( K ~ K ~ ) - - ~  V K  

of each plane wavelet has intrinsic speed (relative to the gas) of magnitude 
(IT,)*, independent of the wave normal. 

These waves, with parameter a chosen to label the wavelets monotonically, 
model the behaviour of high frequency signals (w-1 small) in each vicinity, 

Amongst the solutions to (19), (ZO), or the equivalent equation 

the standard unidirectional unsteady @’(a) = 0) and two-dimensional steady 
( v  = 0, K~ = 0) solutions are just two of many. However, in providing approxi- 
mate relationships between fluctuations in p, u, q, s, v and w in each region of a 
high frequency (w-1 small) signal with restricted diffusive forces (wp small), 
the unidirectional waves are sufficient. In such signals, the shock formation 
lengths and times are much larger than one ‘wavelength’, when the unit vector 
n(a) and density p(a) have only small fluctuations about their local mean values 
N, P .  The predominant rapid fluctuations in u are then in the direction N and 
are given by 

U(E) N U + L N [ p ( a ) - P ] .  
P 

This relationship allows us to  calculate relaxation and diffusion terms which 
slowly distort and attenuate the signal, whilst the fluctuations in c(a), a non- 
linear effect, are calculated from (20) in terms of p(a) and n(a). 
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In devising the perturbation procedure for small w-l, small up, and rapid 
fluctuations of restricted amplitude 8, we regard each dependent variable in 
(6)-(9), (12)-( 14) as composed of two parts: one corresponding to the background 
'quiet' flow and dependent only on (x ,  t ) ,  whilst the other is a function strictly 
periodic in a and with zero mean value at each (x ,  t ) .  Thus, we set 

P = P(x, t )  + @(a, X, t ) ,  4 = Q(x, t )  + !?(a, X ,  t ) ,  

s = S(x, t )  +&(a, x ,  t ) ,  u = U(x, t )  + qa, x ,  t ) ,  

K = n(a, x, t )  ~ ( a ,  x ,  t ) ,  

where n.n = 1, n(a,x,t) = N(x,t)+fi(a,x,t), 

K - l  = k-'(X, t ) [ l  +a(& X ,  t ) ] ,  V / K  = C(a,  X ,  t )  = c ( X ,  t )  + c (̂a, X ,  t ) ,  (22) 

in equations (6)-(9), (12)-(14) extended to all (a,x,t),  and in (17). Here all 
fluctuations 8p, a,$, 2 will be regarded as small perturbations about the quiet 
flow, so that our first iteration theory differs from classical acoustics only in 
that the wave velocity nc is allowed to fluctuate. This, however, has major 
consequences since fluctuations in i? need not remain small, and shocks may form. 

In  the system of governing equations extended to all (a, x ,  t ) ,  (6)-(9) are modi- 
fied by the addition of terms 

w[ ( v  - Kujnj)8pa - Kpnjdja], 

respectively on the left-hand sides. Although, formally, these terms are large 
O(w), their contributions to (6)-(9) will remain bounded if the characteristic 
equation for v,w of (16) is satisfied outside shocks at  least to O(w-1, up), and if 
as in (21) 

with 8, fi, @, P remaining small. For definiteness we choose 

v-Kujnj = K(II,)+, so that c = ujnj+(III,)*, (28) 

and so that physically meaningful a surfaces are characteristic surfaces for the 
diffusionless system (6)-(9) (the limit wp = 0). Expressions (22) may be deter- 
mined iteratively following previous methods (Parker 1968), and to first order 
in the formal small parameters w-l, up, 6, give a non-linear acoustics. In  what 
follows, all functions ll, T ,  C, L and their partial derivatives will be evaluated 
as functions of the 'background values ' P,  Q,  S.  

At the first iteration to the extended equations (6)-( 9) we insist that the con- 
tributions (23)-(26), even if finite, must have negligible mean values. Thus, by 
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averaging the equations over finite ranges of a when terms non-linear in p^, 8, @, 3, fi 
and 6 are neglected, the basic equations for the background flow are found as 

ap ap aqv0, 
- + U . - + P - -  
at 3 ax, ax, 

au, au. an aTii 
P-+PU.L+-(P,&,S)  = -, 

at 3 ax, axi ax, 

These, not unnaturally, show that to this approximation the flow may be any 
standard relaxing, compressible gas flow satisfying suitable boundary conditions, 
and with viscous, diffusive and heat conduction effects 

(corresponding to expressions (12)-(14)) which will be small with p except in 
boundary layers, shear layers and shocks. Only a t  subsequent iterations does the 
acoustic signal affect the background flow, introducing acoustic wind and heating. 

4. The acoustic signal 
In  the acoustic signal p^ is the predominant fluctuating variable, with a 

related in such a way that fluctuations G, 8 , 3  are negligible at  the first iteration. 
Only the oscillatory contributions 

to the diffusive 'forces' (using (12)-( 14), with temperature variations in the co- 
efficients p, p,, D, K neglected for simplicity) have a significant effect. 

To determine a propagation equation for the basic signal p(a,x,t) we note 
that a certain linear combination of (23)-(26) possesses only diffusive terms. We 
take the similar combination 
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of the modified equations (6)-( 9) to obtain the exa.ct equation (in this paragraph 
II, E, T, L and their derivatives are evaluated at  (p, q, s) ) 

This may be regarded as an ordinary differential equation for p along the space- 

(33) 
time trajectories 

d x : d t  = u + (H,)tn: 1 

at  each a, andisrecognizable, in the diffusionless limit wz,a = 0 in which the system 
(6)-(9) becomes totally hyperbolic, as the bicharacteristic equation along tra- 
jectories (33) lying within the characteristic hypersurfaces 

A similar equation for the ray vector n is thus to be expected. Since (17b), 
which is a consequence of (17a) and suitable initial conditions, implies with 
(28) that 

whilst (17 a) becomes 
a ( m i )  + - + w K 2 ( c z - n i g )  a(KC) = 0)  

at axi 

suitable equations are readily derived. Indeed, we find that 

These also involve directional derivatives along (33), being analogous to the 
‘strip conditions’ satisfied, along each bicharacteristic curve, by the normals 
(q5$, q5J = (aq5/axi, a$/at) to characteristic hypersurfaces q5 = 0 (34) for which 

tq5t+U*q5ji)2 = Hpq5iq5i 

(see Courant & Hilbert 1965). 
Upon substituting (22) into (32), (35), approximating, and using the results 

51 Fluid Mech. 39 
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(29)-(31), we obtain after some manipulation (in regions where p-lz,,  ,u-lQi, 

p-l D, remain bounded) the 'propagation equations' 

= w 2 p p  K (~p^,) , (++p~) +w2p K ( ~ p ^ , ) , K 9  " T P  - + O(w-l, wp, w2puS) (37) 

" P  
for p^, and 

for k, N,, i?. Here, when the diffusion parameter w2p remains bounded, the 'pro- 
pagation rays' along which (37) will be integrated for p^ depend, at  each a, only 
on the background flow variables and the vector N,(x, t ) .  They are determined 
by averaging (38) with respect to a! t o  obtain 

dx 
dt 
3 = q+ (" , )~Ni  and are the rays 

along which k, A$ vary according to 

By comparison of (41), and the similar equation deduced from (36) for kC 
( = k q q  + k( ITp)4) ,  with the standard parametric system of equations (Courant & 
Hilbert 1965) dx, 

dt 
dl 

-- dl - F$i = 2U#t+q#j)-2"p#i, 

- = F& = 2(#,+ q#jL 
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d e W g  bicharacteristic strips of a system of equations whose characteristic 
condition is 

we see that the rays (40), (41) are those of linearized acoustics in the diffusionless 
case (p = 0). Here the normals to the characteristic hypersurfaces q5 = const. 
have been written in the form 

In this theory, neither class (i) nor class (ii) mechanisms affect the propagation 
rays. Once the background flow (29) is found, only ordinary differential equations 
(40), (41) need be solved to give the rays, and hence N, k. For convenience we 
may label these rays as X = const. and take ( X , t )  as independent variables. 
Then, for a signal whose N(x, 0) are normals to the surfaces @(x,p) = 0 with 
/3 N physical w a  at  t = 0, we write xi = x:(Xj, t ) ,  and solve (40), (4 1) 

a@ X*(X, 0) = x, k&(X,, 0 )  = - -. ax$ 

for initial conditions 

The standard theory of characteristic surfaces then ensures that a t  all subse- 
quent times N ( X ,  t )  are normals to propagating wave surfaces 

x = x * ( X ,  t )  with @ ( X ,  p) = 0, 

whose successive positions compose the characteristic hypersurfaces ,8 = const. 
formed from the bicharacteristic strips. Each wave surface may then be para- 
metrized like the wave fronts of Varley & Cumberbatch (1965) by t and two 
functions of X ,  whilst comparison with (16) shows that for all time 

/3 - physicaloa 

and is the appropriate large scale phase variable. 

5. Modulation, attenuation and distortion 
The purely geometric focusing effects and the convection and refraction due 

to the background flow (29) are embodied in (40), (41), (42) of the previous 
section. The damping and distortion effects require more detailed analysis, and 
involve the variable a. 

When ( X ,  t )  (or, indeed, XI, X,, p, t )  are used as independent variables the 
relevant approximation to (37) takes the form 

and is the growth law for linear acoustics in non-homogeneous, unsteady, re- 
laxing regions, with a diffusive term on the right-hand side. In  general (43) is a 

51-2 
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parabolic equation which is readily transformable into a ‘ Burgers equation’ with 
variable coefficients, but in the special case ,u = 0 when viscous and diffusive 
damping disappear it reduces to an ordinary differential equation, a ‘transport 
equation’. The behaviour in this limit is simply obtained, and since, when w2p 
is small, we expect diffusion to be negligible almost everywhere, we first construct 
solutions generalizing Lighthill’s ( 1956) one-dimensional analysis for a non- 
relaxing gas. 

#&a, x ,  t )  = r (a,  X )  exp { - - m ( X ,  t ) }  (44) 
The solutions 

of the transport equation ( (43) with p = 0) show how a modulates, along each 
detailed ‘phase ray’ ( X , a )  = const. Here 

(from (291, (37) and (41)) includes terms giving: (a) the modulation proportional 
to P-g(IIp)a, due to variations in P , & , S ;  ( b )  the modulation with change of 
‘wavelength ’, and proportional to k-4; (c) the strengthening and attenuation 
due to geometrical focusing and non-uniform convection; (a) the relaxation 
damping, with local damping coefficient? 

Although (45) allows for differences in the sequences of P, U ,  &, S values en- 
countered along exact bicharacteristics (34) and their linearizations (40), it 
does not explicitly exhibit the shock-forming tendencies. Such ‘amplitude dis- 
persion’ occurs, in our representation, primarily in the function C controlling 
details of the relationship (16) between physical a and (x, t ) .  However, by sub- 
tracting (39) from (38), an appropriate ‘transport equation’ 

is obtained for k .  It shows how C decreases in compressive regions (pa > 0) ,  
so that K increases and physical a wavelets converge. Indeed, using (22), (44), 
(46) we see that 

k(X, t )  
1 +;(a, x, t )  ’ 

/( = __ 

This gives a familiar form (see, e.g. Varley & Rogers 1967) 

t When the background flow is a t  equilibrium L(P,  Q,  8)  = 0, equivalent standard 
expressions (Vincenti & Kruger 1965, p. 257) may be obtained, as in Parker (1968) for 
one-dimensional flow. 
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for the restriction on driving signal ‘steepness’ if shocks are to be prevented, 
and, for signals of given profile, is a restriction on the product of amplitude and 
frequency. 

Equations (44), (47) show the basic structure of the non-linear signal. Along 
each ‘propagation ray’ (40)  j3 varies, with an amplitude modulation factor 
(A. M. F.) exp( - m ( X ,  t)>, which does not depend on the label a for the phase 
rays. Since, in a portion of physical wave form containing significant fluctuations 
in ~ ( a ,  X ) ,  p will vary only to O(w-l), this modulation is the physically observable 
amplitude modulation. The wave normal varies with N ( X ,  t ) ,  the length scale 
with k ( X ,  t )  (so that ‘wavelength’ and ‘frequency’ modulate with k-l ,  Ck res- 
pectively), whilst the detailed distortion of the profile is given via the implicit 
solutions to ( l 6 ) ,  relating a to ( X ,  t ) .  

To this approximation ( 1  6 )  gives 

(49 )  
wkNi aa wlcc aa 

Zi 1 + 2 ’  at 1 + 2 ’  
_ _ _ _  -- -- - 

with 2 given by (47), showing that on some physical wavelets the wave form may 
steepen without bound. As K becomes large, the diffusive contributions (31) 
t o  (23)-(26) grow (since the true diffusion parameter in (37) and (43) is 
p ~ ~ ~ ~ ( a , X , t ) ,  not w2p)  and the simple wave approximations (27) ,  (28) are in- 
validated. However, unless we are interested in the details of the shock structure, 
it is sufficient to say that certain wavelets ‘disappear’ into shock discontinuities. 
The solutions will be composed, like Lighthill’s (1956) asymptotic solutions of the 
Burgers equation with vanishingly small viscosity, of regions of relaxing signal 
(44) separated by, and matched across, certain thin propagating shock layers. 

The class (ii) damping mechanisms act predominantly ‘within ’ the shocks, 
yet their effect on the signal decay is virtually independent of the dissipation 
mechanism. The only important detail is the shock ‘position’, defined, in the 
regions where solutions to (49) are multivalued, by the matching between values 
a - ( X ,  t ) ,  a+(X,  t )  immediately preceding and following the mathematical dis- 
continuity. These are related through (49)  by 

[l+Kh(a,X,t)]da = a+-a-+ Kh(a,X,t)da = 0, 1:: 1:: 
or, using (47), 

a+ - a- 
- = X ( X , t ) .  r(a+, X )  -r(a-, X )  

We may also derive, for a ‘weak shock’ matching flow variables @-,ti-) to  
(p^-+,d+) on wavelets with speeds C + b ,  C+t+, ‘jump’ conditions giving the 
standard result (Friedrichs 1948, Lighthill 1960, p. 56)  that the shock propagates 
with the mean speed C + *(6+ + t-). Since this condition ensures that 

aa+ aa- (t+-e-) 
(1 +2)- = wk- 

(l+’c^+)at = - at 2 

= * [ r ( a + , X ) - r ( a - , X ) l t ,  ax 
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we have the equation 

r(a, X)da = x(X, t )  $[r2(a+, X) - ?(a-, X)] =- (a+ - a-) &[./(a+, X) + r(a-, X)] 

(51) 
1:: 
which, with (48), relates a+(X, t )  and a-(X, t )  along each shock. 

Equation (51) is independent of relaxation effects. In fact it  is ‘Whitham’s 
(1952) area rule’ involving only the initial physical profile p^(a, X, 0) = r(a, X) 
along each phase ray, and for waves of arbitrary form it has two equivalent 
graphical constructions (see Lighthill 1956). Its  versatility in solving problems of 
equilibrium gas dynamics is well known. Here we show how it gives simple and 
useful results for ultrasonic attenuation. 

After shock formation, the solution (44), (47) must be reinterpreted. From each 
point (a, X, t )  where (50) has roots a- = a+, and 

r,(a,X)x(X,t) = 1, 

a solution pair a-(X, t ) ,  a+(X, t )  to (50), (51) emanates. Thereafter each interval 
(a-,a+) is discarded from the solution (44), (47), so that only the intervening 
portions of signal survive. In  these portions the only effects of relaxation occur 
to this approximation, in the A.M. F. e- and distortion factor x, whilst the 
pairings between a- and a+ along each ray X = const. are unchanged. The 
explicit effects are seen by comparing functions m(X, t ) ,  x(X, t )  corresponding to a 
solution of (29) and (39), and the functions m0(X, t ) ,  xo(X, t )  corresponding to 
non-relaxing acoustics with the same initial conditions, and in the same (equili- 
brium) background flow. From (45) and (47) we have 

m(X,t)-m0(X,t) = 

at 

giving the relaxation damping, which is unaffected by focusing and which in 
uniform flows gives an exponential decay along each ray. Although the distor- 
tion factor x(t) (and also equation (50) ) is altered by relaxation, equation (51) is 
unchanged, so that if cq- (X, t ) ,  a$ (X, t )  give the shock positions in a non-relaxing 
flow, the corresponding shocks in any relaxing flow must be given by some 
sequence 

of the same pairings, with to related to t by 

(53) 

(54) 

a; (X, t o w  1, .l? (X, to@)  1, 

X(X, t )  = XO(X, to($)  1. 
The shock growth along each ray is merely retarded by relaxation, and the same 
solution given by Whitham’s area rule serves for all relaxing gases. 

Equation (52 )  shows that class (i) relaxation always reduces the distortion 
factor, so that 

but more significantly x(t) will often approach different limits at large t .  In such 
case8 some of the wavelets, which in equilibrium signals disappear into shocks, 

toft) < t 
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survive unmolested. In  ‘strong’ (or, alternatively, extremely rapid) signals, 
virtually all wavelets are eventually swept into the shocks and the signal decays 
like a series of non-relaxing N waves with class (ii) mechanisms providing the 
predominant dissipation, whilst for weak waves of moderate frequency relaxa- 
tion damping is the major attenuation mechanism-acting equally at all wave- 
lets of the signal. 

Outside shocks, the relative importance of class (i) and class (ii) damping 
mechanisms is measured by the parameter w2p.  Relaxation damping and diffusive 
damping are always appreciable over travel times O(1) and O ( , U - ~ W - ~ )  respec- 
tively, whilst diffusion is accentuated by non-linearity unless w-l 6-1 significantly 
exceeds both of these. Thus, for waves of restricted amplitude 

6 < w - l  and 6 < p w  

(or, when a[p(rII,)s]/ap + 0)t  non-linear dispersion is negligible, i? remains small, 
and the linear theory results are a good approximation. For all frequencies 
w ,  (43) may be treated as the linear equation 

for dispersive signals in a non-homogeneous medium. In particular, for sinusoidal 
signals F ( X ,  0, a )  = p0(X) sin 27i-a the solution 

shows the added attenuation due to diffusion, verifying that for extremely rapid 
signals diffusion is the main damping mechanism. In a similar way, a diffusion 
damping correction to  m is obtained a t  each a along each phase ray, by 
substituting (44), (47) into (43). Typically it gives a damping coefficient 0(w2p). 

In  many problems information about energy propagation is required. For 
acoustic signals (22), (27), (31) satisfying (37), (39) with p(a, X, t )  having unit 
period in a for all ( X ,  t )  energy propagates with intensity 

(56) 
n (U+(rIp)*N)--P S2b2(a ,X , t )  [ l + i ? ( a , X , t ) ] d a  

along the propagation rays, where the integral in (56) is taken only over the sur- 
viving portions of (0 , l )  once shocks have formed. Since, with (44), (47), the 
integral in (56) becomes 

P so’ 

a2exp(- 2 m ( X , t ) ~ ~ r 2 ( a , X ) [ l - x ( X , t ) r , ( a , X ) l d a ,  

we see that attenuation is strictly proportional to e-2m until shocks form, and 
thereafter is considerably greater as diffusion mechanisms become significant. 
The differing damping effects thus become manifest at different stages of signal 
propagation, the class (i) mechanisms giving damping of magnitude A everywhere, 
whilst (for pw2 4 1) the class (ii) damping is delayed for times O(w-1(8pmax)--1) 
and then has an appreciable effect. 

t In this case the gas behaves like the (physically suspect) Chaplygin gas p = A - B/p. 
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6. Uni-directional waves 
We consider a one-dimensional disturbance produced by a fluctuating pressure 

p(0,x2,x3,t) = IIo+usin27rwt 

at  x1 = 0, and propagating into the uniform, equilibrium, static region x1 > 0. 
This is the situation usually investigated in non-linear acoustics (see, for example, 
Beyer 1965, Blackstock 1965). 

Equations (29) for the background flow are satisfied trivially, with 

U = 0, P = Po, Q = Qo, S = So imd L(P,,Qo,So) = 0. 

To label the phase surfaces, we choose initial conditions 

v(0,x2,  x3, t )  = 1, ~ ( O , x 2 ,  x g ,  t )  = [n,(Po, Qo, S0)1-* = WJ*, 8 = 4nP)Y (57) 

compatible with (28 ) ,  and such that a = wt at x1 = 0. The driving conditions 
then become p^(a, 0 ,x2 ,x3 ,  t )  = sin 27701, :(a, 0, x,, x,, t )  = 0. 

Equations (42) have simple solutions showing that the wave normals N = (1, 0,O) 
and wave-numbers k = (II,)-* are uniform, and that the propagation rays 

XI = 2 1  - (II,)h, x, = x2, x, = x, 

are rectilinear. Equations (43), (46) then become 

(X, t )  + Ap  ̂= AW~,UK(K~?,),,  
at 

a2 
at 
- (X, t )  = - wSBjS,, 

where A is constant, and 

Their solutions (44), (47) for driving conditions (58), are readily found to involve 
only a and xl. For convenience, we write them i'ts 

p̂  = e--T~i sin 271.q 2 = - r-1 (1  - ecrV1) cos 27ra, (61) 

(62 )  

in terms of a new length scale 

ZJ~ = 277r08B(II,)-*~, = F-'A(IIp)-&xl, 

and introducing a new relaxation coefficient 

r = (27rrwcYB)-lA 

which is the ratio of relaxation effects to non-linear effects. 
Using (61) in (16) we determine the implicit relation 

- w ( x I - ( I I p ) h )  = a-x(yl, r )s in%a 

giving details of the profile distortion, where 

x ( ~ ~ ,  r) = ( 2 d y  (1 - ecrv1) 
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is the distortion factor. This, in the equilibrium limit (r+O) in which non- 
linearity swamps relaxation, takes the form 

x(Y17 O) = xO(Y1) = (2.i.r)-1!/l* 

We see that for all ratios r the profile distortions are similar, and are periodic 
in t at each fixed x. Shocks do not form for all values of I?, but if 

r < i  

y1 = - r-liog (1 - r), 
the equation 2nx(y17 r, = 

has the solution 

for the shock formation distance. This always exceeds the value unity corres- 
ponding to the equilibrium limit, and corresponds to travel times 

7* = -A-l1 og (1  - r), to(+) = ( Z ~ ~ S B ) - ~ .  

After formation the shocks propagate (satisfying (51)) with a++a- = constant. 
Since, in these periodic signals, all shocks are similar, we need discuss only 

the shock originating at x1 = ( I lp )47* ,  7 = 7*,  and propagating with a- = -a+. 
As y1 increases this absorbs wavelets a+ and a- according to 

a- -- a+ 
- X(Y1, r), sin 2na+ - sin 2na- 

-- 

whilst the signal has A. M. F. e-rgl and distortion factor x(yl, r) which also, 
for each yl,  depend only on r. As r increases, the exponential decay and retarded 
non-linear convection become more noticeable, and the shock takes its maximum 
strength at  the moment it absorbs the wavelet a+ = (2n)-l cos-l I?. The number 
cty of wavelets eventually absorbed by the shock is given by 

2na, = F-1 sin 2na,, 

and decreases with I?. On figure 1 the successive wave profiles of one wavelength 
for all initial amplitudes S and frequencies w are illustrated for a gas of arbitrary 
relaxation coefficient A, when d , u  @ 1. To this first approximation in the fre- 
quency parameter u-1 the relaxation time is not comparable with the signal 
period and all profiles are symmetric. The shapes are the same as for a non- 
relaxing gas, but occur at  positions y1 depending on I?, with associated damping 
e-ryi. 

The energy intensity at (x, t )  is obtained from (56), (64) as 

where, for x1 < (I1,)*7*, a+ is zero and the final bracket is unity. In  this r6gime 
relaxation damping is the only effective dissipation mechanism, since wave form 
distortion has not yet convected wavelets into shocks. At the point where shocks 
form, the relative intensity is (1 - r)2, corresponding to the points 3 in figures 2,3.  
Beyond this point, wavelets are absorbed into the shock, and the bracketed 
term gives the diffusive dissipation reducing the intensity from the upper to 
the lower curves in figures 2, 3. 
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In figure 2 intensity decay for differing 6, w in a gas of fixed A, B is exhibited. 
Then r-l- w6B. For weak non-linearity, such that I' 2 1, decay is exponential, 
as though non-linear effects were neglected. For stronger signals shocks form at 
points 3, and diffusion quickly dominates. The curves for differing I' are simply 
related, since, if (64) is expressed as 

a+ = q 2 n X ( Y l >  r)), 
a+ = %t(Yl)  

so that for non-relaxing gases 
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and equation (65) becomes 

the general decay is given by 

Y1 

FIGURE 3. Decay of energy intensity with distance for fixed driving amplitude and 
frequency. E/Eo plotted against y1 for varying values of relaxation r. The upper curves 
correspond to linear theory. The lower curves exhibit shock dissipation. -, I' = 0 ;  
- - - -, r = 0.02; -----, r = 0.1; ......, r = 0.2. 

This information is plotted in a different form in figure 3, where the effect of 
relaxation for signals of fixed amplitude S and frequency w is exhibited. For each 
A (and, hence, each I?) the upper curve corresponds to linear theory, and the lower 
curve shows how non-linearity has no effect until shock formation, but has drastic 
consequences thereafter. The wave forms and intensity decay show good agree- 
ment with the photographs of Krasil'nikov (1963) for distortion of ultrasonic 
waves in water. 

7. Flow over a wavy wall 

at relaxational equilibrium L(P, &, X) = 0, due to a wall W 

having sinusoidal corrugations of slowly varying amplitude and wavelength. 
Under these conditions the ' propagation rays) (40) are rectilinear and stationary, 
and may be parametrized by X,, X ,  as 

We consider perturbations to the steady supersonic flow U = (U,, U,, 0) 

z3 = w-lSb(xl) sin 27rwA(x,) (b  > 0, A' > 0) 
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where 1, the propagation time from W to (xl, x2, x3), is independent of the cross 
flow U,, and where Ul(flp)-*, the relevant Mach number, exceeds unity. The 
appropriate boundary conditions are 

8j3 = h'(x,) b(x,) 2m- cos 2 ~ a  = A'(x,) b(~l )BOr(a) ,  (69) 

and in terms of a new length scale 

the propagation equations (43), (46) become 

and 

Here all coefficients are constant, with A the standard relaxation damping co- 
efficient, and A the diffusion coefficient (Lighthill 1956) in acoustic waves. 

To compare (71)) (72) with Lighthill's treatment for non-relaxing flow we 
replace a by a new variable y(a, xl, Y )  with 

y = - (JJ-~K-I  

so that 
a a a a  a k---t -w-1- -+-+yy-- .  
aa ay7  ay ay ay 

However, (72 )  shows that 

and so (71) takes the form 

like Burgers' equation for beryl with small viscosity and diffusivity, but with 
exponentially decaying non-linear convection terms. Solutions to (73 )  with = 0, 
r,/A finite, and oscillatory data at  Y = 0 are discussed by Lighthill (1956)) 
verifying that, for small p, diffusive effects are negligible almost everywhere, and 
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that the signal consists of simple waves matched across various ‘shock waves’. 
In  similar solutions for non-zero rl, we expect j3 and the ‘excess wavelet speed’ 
yp to decay with e-rl along rays 

r a  _-  d y  A - [P(rI,)+] 6p, d Y -  P A @  

which are identically the a ‘phase rays’. The approximate solution 

p(a, xl, Y )  = h ‘ ( x l ) ~ ( x l ) e - r ~ ~ B ,  cos %a, (74) 

matching boundary conditions (69), remains sinusoidal as a function of a, but 
the excess wavelet speeds of the phase rays will decay. Thus 

and shocks will form only in more violent portions of the signal where 

2nrsqx1)[~’(x1)12 > rl. 
Equation (74) shows the damping effect of class (i) mechanisms everywhere 

in the signal. Indeed for weak waves with b ( ~ ~ ) [ h ’ ( x ~ ) ] ~  4 1 in which the phase 
rays may be taken as linearized bicharacteristics, Vincenti’s (1959) linearized 
results for high frequency waves are recovered. However, for greater amplitudes 
and frequencies non-linearity may ‘feed’ portions of the signal into shock regions, 
where diffusion is accentuated, and the signal is further dampened. 

Since (71), (72) are similar to (59), (60) the signal decay (for w2p < 1) is as in 
figures 1, 2, 3, with Y replacing yl. 

8. Focusing effects 
Equation (45) shows separately the contributions to the A. M. F. arising from 

non-homogeneous background conditions, from refractive and focusing effects, 
and from relaxation. It generalizes the formula (Bretherton & Garrett 1968) 
for energy propagation in inhomogeneous moving media to relaxing (but effec- 
tively non-dispersive) gases, since wk( II,)* is their ‘intrinsic frequency’ in this 
case. 

We illustrate the focusing effects in uniform flow, for which U = 0. Here (39) 
gives 

so that all propagation rays are straight lines 

k = k ( X ) ,  N = N(X), 

x = X + (rI,)*N(X)t (76) 

normal to phase surfaces defined at  each instant by $(X, 8) = 0, and which may 
correspond to any family of surfaces at  time t = 0. Following Varley & Dunwoody 
(1965) we write 
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where Q(X,t) is the current mean curvature, and Qo(X), K&X) are the initial 
mean and Gaussian curvatures, of the appropriate phase surfaces /3 = const., and 
where 

records the cross-sectional area of a typical ‘ray tube’ surrounding X. Then (45) 

(77) 
gives 

showing the intensification cc f-4 as rays converge. In (47) this gives 

f = KO(X)rIptZ- 2Q0(X)(IIP)tt + 1 

e-m = rfw, 

where the first term arises from focusing. Iff increases with t ,  the corresponding 
/3 surfaces are convex, and geometrical attenuation reinforces relaxation, and 
from (48) the threshold value of ra for shock formation is raised. However, if 
f = 0 has solutions for positive t, the relevant portion of /3 surface is concave, and a 
caustic is reached when (rI,)tt equals one of the principal curvatures of p = const, 
t = 0. Except for spherically focused waves (in which f * is linear in t) x remains 
bounded as the caustic is approached, and for sufficiently weak waves the ray 
theory breaks down before shocks can form. 

To this approximation non-linearity cannot delay formation of caustics. 
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N.S.F. grant to Yale University, and he would like to acknowledge such support 
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